사고혁명
루디 러커 저/김량국 역 | 열린책들 | 2001년 03월
루디 러커 저/김량국 역 | 열린책들 | 2001년 03월
이러한 빌려보는 계기가 없었더라면 거의 봤을 확률이 적은 책. 또한 이 책을 내가 우연히 서점에서 봤더라도 작가가 루디 러커라는 점에 주목하지 않았을 듯 싶다. 내 기억으로는 <시간과 공간을 지배한 사나이>라는 책을 쓴 것으로 기억되는데.. 맞는지는..-,-?
수학과 관련된 4가지 정도의 주제를 놓고 설명을 한다. 예를 들어 대수와 기하의 관계를 설명하다가 마지막에는 힐버트가 언급되고, 3단 논법을 통해서 마지막에는 괴델에 이르고, 무한에 대해서 정의하다가 정보와 컴퓨터 이야기가 등장한다. 읽고 있는데, 내용이 잘 이해가 안된다. 게다가 문제는 요즘 지하철 타면 졸아버리는 문제가 생겨서 심하게 읽고 있다가 어느새인가 꾸벅꾸벅 새가 모이를 먹듯 졸고 있다 흑흑 ㅜㅜ;
이 책에 대한 만족도는 그저 내가 알고 있는 몇가지 개념을 묶을 수 있었다는 점. 예를 들어 힐버트나 괴델의 이름에 대해서 들어만 보았지 어느 영역에서 어떠한 쓰임새로 차림을 갖추는지는 정확히 몰랐다.
또한 참새가 방앗간 못지나 간다고 수비학에 대해서 관심이 --; 게다가 수와 기하의 연관에 대해서 재미있게 풀어놓으니 색다른 맛이 나서 재밌다는 생각이 들었다.
게다가 읽으면서 자꾸 도표를 보니 선생님 따로 만나서 놀다가 방에 흩뿌려져 있는 위와 같은 도표가 매칭 되면서 나도 열심히 공부하면 나중에 저렇게 평면상에 괘상을 그릴 날이 오지 않을까 생각을 해봤다. (그림은 저작권(?) 때문에 모자이크!)
괴델이나 힐버트에 대한 전기나 책을 나중에 좀 보고, 주역공부할때마다 수학에 대한 개념이 없다고 말씀하셨는데 책을 읽으니 여실히 수학에 대한 개념이 없음을 느꼈다. (과학서적 볼때는 그래도 좀 쉬웠는데 ㅡㅡ;)
Q. 이 책에서 286쪽에 공리로써 이야기 하고 있는 M과 내가 통일장으로 알고 있는 M이론과 같은 M인가 (통일장에서 M은 ?)..
수학과 관련된 4가지 정도의 주제를 놓고 설명을 한다. 예를 들어 대수와 기하의 관계를 설명하다가 마지막에는 힐버트가 언급되고, 3단 논법을 통해서 마지막에는 괴델에 이르고, 무한에 대해서 정의하다가 정보와 컴퓨터 이야기가 등장한다. 읽고 있는데, 내용이 잘 이해가 안된다. 게다가 문제는 요즘 지하철 타면 졸아버리는 문제가 생겨서 심하게 읽고 있다가 어느새인가 꾸벅꾸벅 새가 모이를 먹듯 졸고 있다 흑흑 ㅜㅜ;
이 책에 대한 만족도는 그저 내가 알고 있는 몇가지 개념을 묶을 수 있었다는 점. 예를 들어 힐버트나 괴델의 이름에 대해서 들어만 보았지 어느 영역에서 어떠한 쓰임새로 차림을 갖추는지는 정확히 몰랐다.
또한 참새가 방앗간 못지나 간다고 수비학에 대해서 관심이 --; 게다가 수와 기하의 연관에 대해서 재미있게 풀어놓으니 색다른 맛이 나서 재밌다는 생각이 들었다.
괴델이나 힐버트에 대한 전기나 책을 나중에 좀 보고, 주역공부할때마다 수학에 대한 개념이 없다고 말씀하셨는데 책을 읽으니 여실히 수학에 대한 개념이 없음을 느꼈다. (과학서적 볼때는 그래도 좀 쉬웠는데 ㅡㅡ;)
Q. 이 책에서 286쪽에 공리로써 이야기 하고 있는 M과 내가 통일장으로 알고 있는 M이론과 같은 M인가 (통일장에서 M은 ?)..